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Abstract. The complexity of a neuronal cell shape is known to be related to its function. Specifically,
among other indicators, a decreased complexity in the dendritic trees of cortical pyramidal neurons has
been associated with mental retardation. In this paper we develop a procedure to address the characteri-
zation of morphological changes induced in cultured neurons by over-expressing a gene involved in mental
retardation. Measures associated with the multiscale connectivity, an additive image functional, are found
to give a reasonable separation criterion between two categories of cells. One category consists of a control
group and two transfected groups of neurons, and the other, a class of cat ganglionary cells. The reported
framework also identified a trend towards lower complexity in one of the transfected groups. Such results
establish the suggested measures as an effective descriptors of cell shape.

PACS. 87.80.Pa Morphometry and stereology – 87.19.La Neuroscience

1 Introduction

Classical investigations in neuroscience have added a large
amount of descriptive data to the knowledge of the mam-
malian neural system and ultimately of the functioning of
the brain. In recent years the use of computer and algorith-
mical methods has been incorporated into the biological
sciences with the aim of achieving quantitative analysis
and modelling. Being no exception to this important ten-
dency, mathematic-computational investigations in neuro-
science are still in an incipient stage, with many challeng-
ing questions and potential for important results. While
the effort to model quantitatively the emergent features
of a neural system or element (e.g. a single cell) involves
its own technical difficulties, neuroinformatics has already
led to important results regarding the interplay between
the morphology of dendrites and their firing patterns [1].
One difficult aspect implied by the use of computers in
neuroanatomy is the relatively limited availability of ac-
curate spatial data of real dendritic arborizations for di-
verse morphological classes. The alternative approach of
generating morphologically realistic neurons has been suc-
cessfully carried out by using a complementary approach
based either on recursive [2] or topological [3,4] algorith-
mic implementation.

The anatomic details of the neuronal cells have been
shown to represent a relevant feature, for phylogenic

a e-mail: marconi@if.sc.usp.br

and ontogenic studies, in the diagnosis of diseases and
in investigating the interplay between form and func-
tion [4–6]. With the availability on the Internet of
combined databases of virtual and real (histochemically
marked) neurons, the analysis or morphological character-
ization of newly acquired neuronal information can now be
the subject of systematic processing by computer meth-
ods, provided suitable shape descriptors are identified and
applied.

There is a current interest in many branches of Phys-
ical and, more recently, Biological sciences to study in
a quantitative way the geometrical outline of structures,
both static and in development, and from that knowledge
to probe further into the functioning and justification of
those forms. Examples of results of such a quest in biol-
ogy ranges from the elucidation of the Fibonacci spirals
emerging in sunflowers [7,8] to the fractal characteriza-
tion of the nature of many botanical plants [9]. For over
a century the search aimed at establishing a relationship
between the form and function of neuronal cells has chal-
lenged and stimulated researchers, starting from the pi-
oneering efforts of Ramón y Cajal [10]. While many dis-
eases have been diagnosed based on the visual perception
of morphological alterations in general tissue morphology,
automated approaches remain promising subjects of re-
search, with many potentially important applications.

Although it is now generally accepted that dendritic
morphology plays a crucial role in the functioning of the
neural cell and ultimately in the behaviour of the neural
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system [1,11–14], there is no deterministic way to choose
the best quantitative descriptor of the geometry or topol-
ogy of single neurons. In order to be particularly useful,
such descriptors should correlate in some way with the re-
spective performed functions and behaviour, allowing ab-
normalities and specific divergences from a healthy state
or development to be clearly identified. An additional ben-
efit of such an investigation of the physical basis of neu-
ronal shape and growth is the possibility for investigat-
ing, through modelling, the relationship between neuronal
shape and function.

The study of biological forms requires the selection of
shape descriptors or shape functionals that fulfil a set of
requests. First, measures are expected to be objective and
fast (in order to treat a representative number of cases),
while retaining comprehensiveness and being potentially
discriminative. In addition, such measures should lead to
meaningful biological interpretations. An important the-
oretical issue is the relative degeneracy of a set of mea-
sures, a concept that reflects the fact that many differ-
ent forms or shapes produces the same or approximated
measures. It has been experimentally shown [5,15,16] that
multiscale analysis tends to augment the resolution power
of geometric descriptors and, despite the increased com-
putational demands, this procedure provides useful addi-
tional information and characterization of the considered
objects. The neuronal cells have, in general, a complex
spatial tree-like structure with many dendritic bifurca-
tions leading to efficient spacial coverage, amplifying the
influence area and optimally connecting the neuron with a
neighbouring cell’s dendrites or axons. This structure has
been shown to exhibit different levels of partial fractality
at different spatial scales [6,17,18].

A recently reported [19,20] procedure for calculating
additive shape functionals, known as Minkowski func-
tionals gathered in a framework called Integral-Geometry
Morphological Image Analysis, MIA, has been success-
fully applied to many areas of research including Statisti-
cal Physics, Cosmology and Material Sciences [19–23]. A
first attempt to bring those morphological concepts into
biological sciences, targeting the efficient discrimination of
two main types of the domestic cat’s ganglionary neuronal
cells, has been reported recently [24]. The use of additive
functionals is implemented in a pixelwise approach lead-
ing to the possibility of straightforwardly obtaining the
above mentioned multiscale fractal dimension for comple-
mentary shape description. Every additive continuous and
motion invariant functionals in the 2D Euclidean plane
can be expressed as a combination of three Minkowski
functionals which are proportional to a known geometric
quantity, namely the metric area and perimeter and the
topological Euler connectivity number. This completeness
extends to higher dimensions and the geometrical func-
tionals multiplicity is always one plus the dimension of
the lattice generalized voxels (e.g. 3 in 2D plane, 4 in 3D
space, etc.). While the theory of Integral geometry pro-
vides a sophisticated set of results and formulae, the prac-
tical implementation of the procedures in Image analysis
is relatively simple and efficient [19,20]. The basic ideas

of this methodology is described in Section 2 and a simple
example is worked out to outline the procedure.

In this paper we investigate the importance of the
spatial distribution of branching points in neuronal ar-
borizations to provide a discriminative and informative
characterization of the neuronal morphology, with special
attention given to additive shape functionals. This novel
procedure involves mapping the neuronal image onto a
set of points representing its bifurcation pattern, which
are subsequently dilated in order to produce a multiscale
representation [25], as the Minkowski functionals of such
a set of points is recorded. The obtained results substan-
tiate the potential of the above procedure regarding its
application to a database of 3 categories of rat neuronal
cells and one class of cat ganglion cells. The results are in
accordance with the biological importance of the spatial
distribution of branches [1,11,12,17,26,27] and provide a
discriminative measure for the morphological characteri-
zation of the neurons, indicating subtle morphological dif-
ferences as a consequence of the considered gene trans-
fectation in the rat categories. This suggests that those
treatments may not significantly alter the topological as-
pect of the branching cell form as far as the considered
measurements are concerned.

2 Additive functionals

Integral geometry algorithms have been successfully used
to characterize morphologically complex patterns where
the precise process of formation is not completely known
and is a subject of modelling, see for example [28]. The
central procedure is the calculation of intrinsic volumes or
Minkowski functionals (or yet querrmassintegrals), which
are a generalization of the usual determination of volume.
They can be defined as related to both differential and
integral geometry setups.

For the sake of a better explanation, we start with a de-
scription of the practical aspect of the adopted procedure.
The Minkowski functionals of a body K in the plane are
proportional to its area A(K), perimeter U(K) and the
connectivity or Euler number χ(K). The usual definition
of the connectivity from algebraic topology in two dimen-
sions is the difference between the number of connected
nc components and the number of holes nh,

χ(K) = nc − nh. (1)

So, if K happens to be an image of the number 8 as
in Figure 1, its connectivity number would be χ(K) =
1 − 2 = −1. One instance where these functionals appear
naturally is while attempting to describe the change in
area as the domain K, now assumed to be convex, un-
dergoes a dilation through a parallel set process using a
ball Br of radius r

A(K ⊕ Br) = A(K) + U(K)r + πr2. (2)
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Fig. 1. The disjoint decomposition of a pattern K (left) into
a sum P (right) of disjoint interior elements.

Generalizing to higher dimensions, the change in hyper
volume is given by the Steiner formula [21]

vd(K ⊕ Br) =
d∑

ν=0

(
d

ν

)
W (d)

ν (K)rν , (3)

where the coefficients W
(d)
ν are referred to as Minkowski

functionals. For instance in the plane (d = 2),

W
(2)
0 (K) = A(K), W (2)

1 (K) =
U(K)

2
, W

(2)
2 (K) = χ(K)π.

(4)
Despite the wealth of results and continuum formulae

for obtaining these functionals, it is useful to recur to the
discrete nature of the binary images we wish to analyse by
looking at the distribution of pixels in the planar lattice.
On that level, by exploring the additivity of the Minkowski
functionals, their determination reduces to counting the
multiplicity of basic building blocks that compose the ob-
ject in a disjointed fashion. Figure 1 illustrates this pro-
cess. A pixel can be decomposed as a disjointed set of
4 vertices, 4 edges and one square. The same process can
be applied to any object in a lattice. The fundamental in-
formation needed here is a relationship for the functionals
of an open interior of a n-dimensional body K which is
embedded into a d-dimensional space

W (d)
ν

(
K̆

)
= (−1)d+n+νW (d)

ν (K), ν = 0, . . . , d. (5)

As there is no overlap between these building blocks
and by the property of additivity of these functionals, for a
body P composed of disjointed convex interior pieces N̆m,
we may write

W (d)
ν (P) =

∑
m

W (d)
ν

(
N̆m

)
nm(P), ν = 0, . . . , d. (6)

Where nm(P) stands for the number of building el-
ements of each type m occurring in the pattern P . For
a two-dimensional space, which is our interest regarding
the considered neuronal images, we display in Table 1 the
value of Minkowski functionals for the building elements
in a square lattice of pixels and their direct relation to fa-
miliar geometric quantities on the plane. Using the infor-
mation (with a = 1) presented in Table 1 and equation (6)
we have

A(P) = n2, U(P) = −4n2 + 2n1, χ(P) = n2 − n1 + n0.
(7)

Table 1. Minkowski functionals of open bodies N̆m which com-
pose a pixel K: P̆ (vertex ), L̆ (open edge) and Q̆ (open square).

m N̆m W
(2)
0 = A(N̆m) W

(2)
1 = 1

2
U(N̆m) W

(2)
2 = πχ(N̆m)

0 P̆ 0 0 π

1 L̆ 0 a −π

2 Q̆ a2 −2a π

Going back to Figure 1, we find, for this specific exam-
ple, as n2 = 16, n1 = 47 and n0 = 30, that A = 16, U = 30
and X = −1. So the procedure to calculate Minkowski
functionals of a pattern K has been reduced to the proper
counting of the number of elementary bodies of each type
that compose a pixel (squares, edges and vertices) involved
in the make up of P .

3 Branching point patterns

The existence of profuse branching structures in natu-
ral shapes provides evidence of the effectiveness of such
shapes in providing an interface with its environment as
well as for enabling connections. As pointed out in [12]
many conditions may interfere with the morphology of the
neuronal tree structure, for instance learning, ‘enriched’
environment, hormonal fluctuations and levels of bioelec-
tric activity.

The relationship between dendritic morphology and
cell functioning, alone or connected in networks, has
drawn the attention of scientists leading to a search for
a set of measures that would as completely as possible
describe the neuronal shape [29]. For example, the de-
pendence of the dendritic diameter on the distance from
soma, the relationship between the dendritic diameter
before a bifurcation point and the diameter of the two
daughters stemming from this point, or the ratio of di-
ameters of daughter dendrites. These are standard exam-
ples of a global feature (the first) and two local properties
(the following two) one can specify/calculate in describ-
ing/analysing a neuronal shape, real or virtual, see [2].
There is a vast recent literature describing shape analysis
in general and applied specifically to neuronal shape, see
for example [12,27,30] for a general dendritic description,
and [18] for multiscale fractality, [15] for wavelets and [5]
for bending energy applied to neuromorphometry.

Since the pioneering work of Sholl [26], some authors
have mentioned specific situations where the well-known
Sholl analysis could lead to degenerate results, assigning
to visually different neurons the same (in statistical terms)
descriptor values, see [30] for example. The method makes
use of a reference point at the soma and draws concentric
circles through the dendritic field, while counting the num-
ber of intersections within each circle. While this process
is easy to implement manually, which may account for its
popularity, it clearly fails for asymmetric forms. While al-
ternative approaches [31] report success in improving this
setup, we take a different route, abandoning the soma as
a reference point.
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We start our analysis by taking all bifurcation points
and constructing another image keeping the metric rela-
tion between these points. Although there are automatic
ways of extracting salient points [32–34], we implemented
this task in a semi-automated way, which is followed by
a sequence of exact dilations (permitted parallel set dila-
tion [25]) of the selected points. Although primarily in-
terested in the connectivity, all Minkowski functionals are
calculated by a routine that counts efficiently the multi-
plicity of the building elements for each neuron image at
every radius of dilation as described in Section 2, equa-
tion (7). The idea is to use the connectivity of the set of
points to capture, at each scale, the spatial relationship
of the neuron branching structure. As this measure is in-
variant to rotation and translation, as well as to scaling,
eventual variations of size due to the relative stage of de-
velopment can be disregarded.

We investigate the morphology of two different cate-
gories of cells. One involves cat ganglion alpha cells, which
constitutes a class by itself but rather diversified in form,
see [24,35]. The other includes foetal rat cerebral cortex
neurons cultured in a 2D tissue system [36]. This category
is subdivided into three differently treated classes con-
sisting of a control group, a group of neurons transfected
with a gene OPHN1 which encodes for oligo-phrenin, and
a positive control group transfected with p190 RhoGAP.

Figure 2 shows examples of two treated rat neuronal
cells, illustrating the branching selection process adopted
in this work. Note that the neuron images have been
rescaled in this picture, but the final dilation radius in
all processed samples are the same and equal to 30 pixels.

It is important to comment on the complementary na-
ture of the framework proposed in this article with respect
to more traditional approaches reported in the literature.
When compared to the previous Sholl methodologies, the
measurements in our approach adopt multiscale concepts
so as to retain as much as possible the metric and global
structure, while avoiding the somewhat arbitrary use of
the soma as a general reference. In order to express in a
more objective and effective way the morphological fea-
tures of special interest, namely the overall complexity of
the neuronal pattern, our procedure was designed from
the start to concentrate on the bifurcation points, which
are used as primary data. No attempt is made here to
achieve completeness in the shape description, or to use
the considered measures as features to be incorporated
in an algorithm to grow artificial neurons. However, the
reported measurements can be useful for statistical vali-
dation of such artificial data, in the sense that both the
simulated and original neuronal structures should lead to
the same probability densities.

4 Results

For each cell we calculate multiscale curves of connectivity
as shown in Figure 2. As discriminating measurements we
take the area under the interpolating curve (its integral)
and the standard deviation of the difference between that
curve and the original data points. The former can provide

(a) OPHN1 (b) (c)

(d) RhoGAP (e) (f)
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Fig. 2. Isolating morphological information relating to the
neuronal branching structure while preserving the metric rela-
tionship among the branching points. Each bifurcating point
undergoes an exact dilation while its connectivity is recorded
as function of the scale parameter. Prototypical transfected
rat neuronal cell, a) and d). Extracted pattern of bifurcation
points, b) and e). The end of the bifurcation point parallel
set dilation procedure, c) and f). The resulting discriminating
functional for both neuron types, g).

information about the overall structure, while the latter
characterized the finer details. Having performed similar
analysis for area and perimeter functionals, as well as for
the multiscale fractality as derived from the area data,
we decided to focus on the multiscale connectivity of the
branching points set as a descriptor for its relationship to
the spatial distribution of branching points and its above
average discriminating power.

Our primary concern here is to investigate the effec-
tiveness of the procedure adopted to quantify the subtle
morphological aspects that may characterize different cell
types while also expressing a biologically relevant attribu-
tion of the cell form, namely the distribution of bifurcation
points. In this regard, our results, shown by Figure 3, led
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Fig. 3. A discriminative feature space. Most of the Rho-Gap transfected neurons went to the lower left corner of the plot,
while the Alpha cat cells are spread by themselves towards higher values. There is a fuzzy display of both control and OPNH-1
samples.

Table 2. Canonical coefficients.

dim1 dim2

Connectivity Integral −0.893114489 1.08447785

Connectivity Standard Deviation −0.003344825 −0.00731277

to a well-defined separation of the alpha cells in a feature
space defined by the integral of the multi scale connectiv-
ity and its standard deviation.

Although the three differently treated rat cells are
not clearly distinguishable, one group of them, namely
the one containing neurons which show over expression of
RHO-GAP following transfectation, clearly tends to pop-
ulate the lower left corner of the feature space. Yet, while
high dispersion is shown by the rats sample cells, including
the control group which is as much diversified in form as
the treated groups, the statistical tendency towards com-
plexity agrees with a previous analysis which focused on
the multiscale fractal dimension of this group of cells [37].

Figure 4 shows a scatter plot defined by two canonical
discriminant functions (their canonical coefficients are dis-
played in Tab. 2) for the above selected shape descriptors.
The separability in groups is optimized (see Tab. 3 for
a quantitative index, the Mahalanobis distance) in such
an analysis, leading to a somewhat improved visibility of
the above mentioned distinction of the Rho-GAP over ex-
pressing set of cells from the others. Nonetheless the other
differently treated group mixes up strongly with the con-
trol group, as can be verified from Table 4 which presents
the plug-in (also called confusion matrix) classification re-
sults. As can be seen from this statistical analysis the al-
pha cat cell is not trivially distinguishable from the others,
as shown by the overlaps in both the feature and canonical
discriminant scatter plots. While the effectiveness of use

Table 3. Mahalanobis distance.

Alpha CMV OPHN1 Rho-GAP

Alpha 0.00 6.08 6.53 8.97

CMV 0.00 0.10 0.27

OPHN1 0.00 0.31

Rho-GAP 0.00

of Minkowski functionals (considering the whole cell) has
been previously reported [24], the framework developed
here is meant to emphasize the distribution of the bifur-
cation points, in a way similar to that in Sholl’s analysis,
on the cell morphology.

5 Conclusions

This work describes how promising results have been ob-
tained regarding a novel procedure and measurements for
classifying different types of neurons and to reveal mor-
phologically relevant attributes of different classes. Al-
though the subtle morphological variations induced by the
treatment of our samples are masked by the statistical
distributions and show only a small tendency towards a
reduction in complexity, the procedure shows clearly its
discriminating power when applied to a well characterized
class of alpha cat ganglionary cells. As the considered mea-
surements were designed to express a particular biologi-
cal aspect of the neuronal geometry, namely the spatial
relationship among the branching points, we would ex-
pect that this specific trait is not significantly affected by
the gene transfectation process. The procedure reported
in this paper can be generalised to process 3D Neurons,
real or virtual, and can be implemented straightforwardly.
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Fig. 4. The discriminative power of the above feature space in depth. A discriminant analysis reveals a reasonable separation
among ALPHA and Rho-GAP groups and is not conclusive for the others.

Table 4. Plug-in classification table.

Alpha CMV OPHN1 Rho-GAP Error Posterior Error

Alpha 20 1 3 1 0.20 0.25

CMV 0 9 10 11 0.70 0.73

OPHN1 2 6 10 13 0.67 0.65

Rho-GAP 1 6 5 19 0.38 0.41

By extending the present analysis to 3D we suspect that
subtle information relating to neuron complexity could be
significantly improved.
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